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- 1. INTRODUCTION
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The problem of testing the hypothesis of the equality of the mean

vectors of several multivariate populations with a common covariance

matrix received considerable attention in the literature. The test
procedures are based upon certain functions of the eigenvalues of the i

multivariate analysis of variance (MANOVA) matrix. In the univariate E

L

case, the MANOVA matrix reduces to the ratio of the between group and
within group sums of squares. The joint distribution of the eigenvalues

of the MANOVA matrix in the noncentral case is useful in studying the

L ._-m P

power of the tests for the equality of the mean vectors. This distribu-
tion is also useful in the problems connected with selection of important q
discriminant functions in the area of classification. Fisher (1939),

Hsu (1939), and Roy (1939) have independently derived the joint distri-

bution of the eigenvalues of the MANOVA matrix in the central case.

. I

Hsu (1941) derived the above distribution in the noncentral case when

the sample size tends to infinity and the underlying distribution is

multivariate normal. In proving the above result, Hsu assumed that the

ratios of the sample sizes of the groups to the total sample size tend

to constants in the limiting case. In this paper, we extend,the result

¢
1 of Hsu to the case when the underlying distribution is not necessarily
!
multivariate normal, - i -
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& 2. PRELIMINARIES
]
g
g Fort =1, 2,...,k, let XL = (xlt""’xpt) be distributed with mean
! = : i = LA X
vector gt (*lt""’gpt) and covariance matrix ¢ (cij). Let 5:1’ Xtmt
be a sample of m, independent observations on gt' Also, let
E.=g ImE, N=m+ooobm
t=1
3
‘:’ k ]
o v o= (W) =2 Tm (g -EOE ~E) . 2.1) i
- ij N t e Ut U7
t=1 y
ﬁl Unless stated otherwise, we assume that m, = q.m. So, N = qm where !
q = q1+---+qk. The eigenvalues of WZ-l are constants independent of m.
{ Let the rank of ¥ be r and the nonzero eigenvalues of WZ-l be denoted by h
[ ¢
] \iz...z\;. We assume that these eigenvalues have multiplicities, i.e., .
: ! = = . = ]
X Xi Xh for i a1 + 1,...,ah, h 1, 2,..., v (2.2) '
- where a, = 0, a = a_; +tu, 3, i r. Now, let ¢12°"Z¢g denote the ;
;' eigenvalues of the MANOVA matrix WZ-I where 21 = min(p, k - 1), )
;‘ k K
1 Y - Y £ Y ' ‘
? veg im @& -XO& -X) y
- t=1 A
s }
i - kT ) :
, =< ) ) X ,-X )& ,-X )'={ ). (2.3)
. N t=1 =1 ~t2  ~t." .ttt ~t. ij
-
. m m
L t k t
. = 1 = 1
r. = — 2 X ’ 5" = ﬁ z 2 -)w(t *
\[.:_' ~t. mt J=1~tJ t=1 j_l ]
k Here we note that E(I) = N ; k L and E(Y) = Y + S——%%——l z.
. In the sequel, we need the following lemnas:
;c Lemma 2.1 For each t, t = 1, 2,...,k, let y , 1 px 1, 0 =1,2,...,
L be a sequence of i.i.d. random vectors with Egtl = 0 and with Ip as the
E covariance matrix. Suppose that the k Sequences are independent and
) 2
(] '
s that for each t, E(Ztlztl) < ®,
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If m = q.m, q >0, t=1, 2,...,k and N = m1+--'+mk, then, as m tends

to infinity, the k vectors vmt (;t -yv.),t=1,2,...,k and the p x p

matrix o 1
LYoy 7
— [y, vy .2, -y ) -1]1]
VR o] go1  Rtv e ier e )

converge in distribution to k random vectors Zt = (zlt...zpt)', t

and a p X p symmetric matrix U = (uij), which satisfy the following:

[}
—
(2]
=
RSP A..A'L

1. The joint distribution of {z =1, 2,00asps £t =1, 2,...,k,

je’

1]

u,,, 1 <i<j< p} are kp + %;)(p + 1)-variate normal, ﬁ
2, The k vectors {gl,...,zk} and the matrix U are mutually

independent,

3. E2_=0, EU =0 and g
= - = = ]

varZ = (1 (qt/q))Ip,cov(Zt, z) ~q.qq /q)Ip, t #s
1 2 2 o 1
covlu;y, uy ) = o tZ 9 (BygY5ep - Ds 151, 3 <p -

k
cov(u; 5 s Uy -3 La Yi tlyl t175,e175 .
172 J132 9 e=1 /A Ll ]
‘
i,#dy0r 5 £, L), 4,, 5., 0, <P
Here mt o
t k y
Ve, = F}' Loyerr 3ee = % L1y ='% Lmye, s
T t =1~ - t=1 2=1~ t=1 "~

Ip denotes tne p ¥ p identity matrix and yjtl is the jth element of the :
]
p-vector Yer? and q = q1+...+qt. ‘

Proof: The proof follows by application of central limit theorem and
by direct computations. -
l.emma 2.2 Let Xn’ n=20,1, 2,..., be a sequence of random p-vectors ;
with gn - O in distribution. Then we can find a probability space 3
(7, F, P) on which we can define a sequence of random vectors Xn, :
n=20,1, 2,..., such that i
SRR n
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1. gn and Xn are identically distributed
2, §n-+ §0 pointwise,
The above lemma was given in Skorokhod (1956).

Lemma 2.3 Let gn(x) be a sequence of K-degree polynomials with roots

(n) (n)
X1 ,...,XK

Xl”"’xk’ k < K. 1If gn(x) +~ g(x) as n » =, then after suitable
(n) (n) (n)
1

se e esXy T we have Xj -+ xj, j=1, 2,...,k and

for each n, and let g(x) be a k-degree polynomial with roots

rearrangement of x

The proof of the above lemma is given in Bai (1984). In the sequel,

det A denotes the determinant of A,

» _a_ mem— a commai . . . . s
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;j 3. ASYMPTOTIC JOINT DISTRIBUTION OF THE EIGENVALUES OF
-~ THE MANOVA MATRIX

In this section, we derive the asymptotic joint distribution of the

multiplicities. Let

Then
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which has \i,...,k; as its nonzero roots. Consider the matrix

- vﬂv*}

|

y

1

eigenvalues of the MANOVA matrix when the population eigenvalues have i
;

(

v

i

i

i

i

d

A= (qu/q (Ql - D) e v qu/q (Qk = D))' i

.
}.
R 93 -1
It is evident that AA' = 1 ° || wijll £7? and that A(/ql/q ,...,qu/q ) = 0.
¢
a‘ Let B1 be an orthogonal matrix with (Jhl/q ,...,/qk/q )' as its last
..

column, and A1 be the p x (k - 1) matrix constructed by the first k - 1

columns of AB,. Noting the last column of AB

1 is zero, we know that

1

C MRS 5. & o A A A &

=L 1
F AlA'1 =5 ° H ‘bij” g7 1)
Let
’[ -5
{ ZtQ = (§tQ - gt)
i i
: . k ‘
| §t =L ) Y., and Ve. = %_ ) m£;t |
~Loo mt 9’=1~ g e t=1 e :
ke _ B ;
- L } Do )

Ho= ¢mp (v =y 0)seem G - y.2)

m Y \

According to Lemma 2.1, we have

(Hm' Um) in dist. (H, U)

........
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where H = (Zl"°"zk)’ and U = (uij) are mutually independent, and are

distributed respectively as (Zl,...,Zk) and U defined in Lemma 2.1,

By simple computation, we find that the eigenvalues of - ‘1 are
the same as the solutions
11 ' 1 ' 1 ' ' 1 =
det S HH' - — HA' - — AH +AA" -4 -—1U_ ||l=0. (3.2)
N mm N m N m Ve m

Let Gm be the p x (k - 1) matrix constructed by the first k - 1

columns of HmBl' Noting that the last column of HmB1 is zero, we find (3.2) is

equivalent to

detHicc'-—LGA'-lAc'+AA'-¢I— vl =o0. (3.3)
N mm N ‘

1
m 1 YN 1 11 vy m
Note that the p x (k - 1) elements of the first k - 1 columns of

HB, are i.i.d. N(0,1)'s and the last column of HB

1 is zero. We know

1

that the elements of Gm converge in distribution to p x (k - 1) i.i.d.

N(0,1) variables, which are independent of U. Let H, be the p x (k - 1)

1
matrix constructed by the first (k - 1) columns of HBI'
. -1
Recalling that A,A! =1 ~ ||y, | z G , we find that there exists a

1 1

p x p orthogonal matrix B, and a (k - 1) x (k -~ 1)

2
- veul AT,

A1 B2 diagfv' A EREER AN 0...0] B3

where the diag[v){..:ffz, 0...0] denotes a p x (k - 1) matrix whose

first r diagonal elements are Xi,...,A; respectively, and the remaining

elements are all zero.

Let W = B}G B} = || w(“‘)H = B)U B, = | ui'Jf‘) | and let v = N2 ,
Then (3.3) is equivalent to
det|| varu' - ve™ +p+v0 || =0 (3.4)
m m m
where

‘ ()1 - d))Iul 5’

D = ', ;

()\\J - ¢)Iu w
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(m) (m) _(m),
Cir -- Oy By l
c(“‘)=-.'..'.“... ]
e m) m '
AERVE S VIV | ]
Pe(m g™ ! ‘
l 1 Vv :
and ﬁ
(m) _ (m) (m) - = . :
Chh‘” Y (5 )H i T 7
(m) _ (m) (m) . .
“gh '” Vhgisy’ * Ay vy “ R S T R RS j
l1<h#gc<wv ]
and |
Eém) = ll (m) H =r + 1,...,p j = ah-l + 19---9aha j = ag_l + 1"--9ag’

As proved earlier, the elements of Hm and of Um tend in distribution
to that of H and U. Hence the elements of wm and of Um will tend in dis- a
tribution to that of H = B) H B} = ][h [{ and of U = B) U B, = [[uij[!, y

satisfying that H and U are independent and hij‘s are i.i.d. N(0,1) 1

variables,

According to Lemma 2.2, without loss of generality, we can assume that
this convergence is pointwise. From (3.4) it is easily seen that for all

w e 2, when m is large enough, equation (3.4) has p roots, and they are

given by ¢1 > ¢23...3¢p.

i = = = cens . 9
Write U ||Vgh|]where Vgh |Hui}H a1 +1, a, ]
j=a_,+ 1,...,a.h »1 <g,h<v+1, a1 =P and denote by Cgh’ Eg, é
the limits of Cé:Z Eém), respectively and take the variable transformation :
¢ = 11 + zv in (3.4). Multiplying by j& the first M) rows and the first
v

) columns of the determinant on the left hand side of (3.4) and making

m tend to infinity, we obtain the following in the limit:

. e R . S - R
P L T N U, S T T A O . A T S S S



det .

Up_r
Let the p roots of (3.4) after the variable transformation be denoted by
- (m) = (4

241 g T \i)/f;, i=1, 2,...,p. Then we know that C(m)

il
LET) + - w, i = a +1,...,p, where Ci’ i=1, 2,...,a1 are the roots of

AT i= l,2,...,a1,

det -C+U,, - =0 .
et || -cuy cIUIH : (3.5)
Similarlv, if we denote by ci:) = (¢i - Ah)ﬁ/; the roots of (3.4) after

variable transformation = (¢ - \h)/JV, we can prove that

—_— + = if i i-ah—l
Cih _ gi if i = a1 + 1”"’ah
—> - if i 3_ah +1,h=1, 2,...,v

where ti’ i=a , + 1,...,ah are roots of

det ||-c +u, - cxuhll = 0. (3.6)

Finally, if we take the variable transformation ¢ = vzc in (3.4),
multiplying by % the last p - r rows and columns of the determinantal equation

in (3.4), and making m + », we get

A e !
IIU 0 El
1
det 0 eee A 1 E' = 0 3.7
VvV u v
v
e W- gl
El Ev p-T

where W is the (p - r) x (p - r) right lower submatrix of BéHlHiBZ'

The equation (3.7) 1is equivalent to




AT

-y vy v

9
det | W-oLer - LEE —.-LEE -1 | =0 (3.8)
A 171 A 272 "y vV p-r * *
1 2 v
If we write
w
11 °°°  1k-1
1 v -
B2H1B = . .
w l..w
pl pk-1

where the w's are i.i.d. N(0,1) variables, then recalling the definition

of El""’Ev and W, we find that

1 1

= 1 o1 .
W- < EEl-...- EE = |l din ,
1 v
k-1
where d,, = z w,,w,, i, j =r+ 1l,...,p. Hence (3.8) is equivalent to
ij il 72
=1+l
( - =
det\!!dijll pr_r> 0. (3.9)
By Lemma 2.3, we see that
+ if i <r
(m) _
Sivel T N9y
Ei ifi=r+1,...,p
where Ci’ i=r+1,...,p are the roots of (3.9). Let Rl = min(p, k - 1).

Note that the rank of H din is £.-r with probability one. Thus, there

1

are surely p - 2. zero roots of (3.9).

1
Up to now, we have proved the following theorem.

(m) (m)

Theorem 4.1 When m tends to infinity, then Cl oo, converge in
I,l
distribution to Lyeeely o where Cim) =N (@i - \i), i=1, 2,...,r
1
and cim) = N¢i, i=r+ 1,...,11, and for n =1, 2,...,v, C + 1,...,5

in decreasing order, are the roots of

- =
det || Con + Upp = &1, I 0. (3.10)

Aad sl Sad St el i M A Sal A S A e e A e . T . e S A

S, WABBSIIOFL JN FD. 1o A RS, 1 . TN ] o
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Cr+l”"’ci are the positive roots of

1
det ‘!|[d |- z1 ” =0 (3.11)
j T e |
=I!_ - = ]
Con = YA (wij + v MIoi, 3 =a,  +1leena h=1, 2,000
k-1
d.. = ) w, i, j=r1r+l,...,p.
13 Q=;+1w12w39 i, ] s P

{wij’ i=1,2,...5p, 3 =1, 2,...,k = 1} are i.i.d. N(O0,1) variable,and

. 7 - . - 1 s s
are independent of {Uhh’ h 1, 2,...,v}, Uhh l{uij‘], i, j a1 + 1,...,ah

satisfving

1) {uij’ 1< i< j< pwith uij = uji are % p(p+l)-variate normal
? - = ’)
2) Euij 0, i, j Iy 2,.004,p
1 £ 2 .2
Eu,y 5579 tzlqt(ERitRjt -1 1<i, j<p
k
-1 ¥ g R
. . . = - . . t
1112 J1J2 9 .2 t 11t 12t ch JZ

if i, # i, or i, # Jg-

Rll e le
. . 1.
- pty 2 - -
. . By H (X) = u) e (Y gk)H.
Rpl . Rpk

in (3.6) into C in

Remark 3.1 The admissibility of changing - C hh

hh

(3.10) can be seen from the symmetry of normality of the entries of

1 1
Chh and the independence of Chh and U,
Remark 3.2 1In Theorem 3.1, it is easy to see that (cr_H,...,cQ ) is
1
independent of (Cl,...,cr). According to Hsu's paper, the densitv of the
distribution of (& 42 ) is given by

r+l 1

s N A . PR PP AN PPN O P S A LY T S S Sy
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) -1 (p-r) (k-1-1) L2, -)V17T o
:t D(c )=22p 172 1 HP(_Z__.E_E.'._];\
R YO LARRELTY) PN T2 T2, 4
e 1 i=1
b 1
- =(2,-2.-1) ]
g S U A e LA ;
4 xy 1 T (g, -t Tz, expy~ 3 ) i
' i=r+l j=i+1 3 ) li=rn1 i=r+l
0> Cr+13"'3c21—>~ 0, (3.12)
where 22 = max(p, k - 1), 21 = min(p, k - 1).
It is evident that we have the following theorems.

Theorem 3.2 Under the restrictions of Theorem 3.1 and that

ERiltRiztletRjzt =90, forallt=1, 2,...,k and at least one among 11,343,

is not equal to any one of the rest and that ERitR§t =1, for all t =1, 2,...,k .
C and i # j, the v + 1 random vectors (cl,...,cal), (Cal+1""’Caz)"'(Bav_1+l""’”r)’ .

(5r+1...C21) are mutually independent.,
]l Remark 3.3 1If for each t =1, 2,...,k, §t has an isotropic distribution }
. with mean vector ut and covariance matrix I, then the additional condition F

of Theorem 3.2 is fulfilled.

Theorem 3.3 Under the restrictions of Theorem 3.2 and that ERit = 3,

for all t = 1, 2,...,k, the density of the distribution of !

- 2 , . . y
(sah-l+1,...,cah)//2kh + 4Kh is given by D(xah-l+1,...,xah), h=1, 2,..., , where .

/o 7 1( v u
Dxy.vex ) = 7 Kirr 1“'izj { AL xj}exp 3-%

‘.“."""' '?-"T" Bk ..4‘

E' When the underlying distribution is multivariate normal, Hsu (1940)
proved the expression (3.12) and (3.13). 1In proving the above result, Hsu used
Lemma 1 in his paper. Recently, one of the authors (Liang) pointed out,

through a counterexample, that the above lemma is incorrect. However,

-
Seadestntontunbaic NG sttt B 0

Bai (1984) had very recently pointed out that the final result of Hsu is

-
—

correct.
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4, APPLICATIONS

"r In a number of situations, it is of interest to test the hypothesis

Hy ¢+ £, =,..5

15 5y Let S, and S, respectively denote the between group

Sk B W
and within group sums of squares and cross products (SP) matrices respec-

S
b
iii tively where SB = N¥ and Sw = Nf. The nonzero eigenvalues of SBs;;]l are

given by blz...z¢? . It is known that

- o

-1
: N-k-p-1) -1, LI
! & =1 E{Sgs,;'} = L YNE-TD " (4.1 .

The problem of testing for the rank of QZ—I is the same as the problem of
testing for the number of significant discriminant functions. A dis-
cussion of some procedures for testing for the rank of { was given in
Krishnaiah (1981). We will discuss as to how the results of Section 3

of this paper can be used in testing for the rank of { when the under-
lying distribution is not multivariate normal but the first four moments

. of the distribution exist. Unless otherwise stated, we assume in the

sequel that (mt/m) = q for t =1, 2,...,k and N = mq tends to infinity.

We can test (e.g., see Krishnaiah (1981)) for the hypothesis Hr+

by using certain functionsn(¢r+1,...,¢z) of the eigenvalues of WE_l
1

1

where Hr denotes the hypothesis that the rank of WZ-I is r. Fisher (1938)

suggested using T, as a test statistic for testing Hr where T, = ¢

1 +...+¢

1 4

r+l ,1'
When Hr is true, the joint asymptotic distribution of N¢r+l,...,N¢9 is the

1
same as the joint distribution of the eigenvalues of Sr : (Ql -r) x (Ql - r)

where S is distributed as the central Wishart matrix with 2, degrees of

2

freedom. We can use ¢r+l also as a test statistic. The

asymptotic distribution of N®t+1, under Hr’ is the same as the distribution
of the largest eigenvalue of Sr' This distribution has been tabulated

:
i
{f (e.g., see Krishnaiah (1981)). Suppose the null hypothesis is not true
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13
-1
and the rank of ¥C is r + s. Then \;+s+1 ...=x£1 = 0, and A;+s > 0.
] ] N .
Also, 1if xr+1""’\r+s are distinct, then
t
(o, M) e N(Opss = Apgs)
2 . , 2
2X gt 4kr+1 /Exr+s + 4A;+

are distributed independently as normal with mean zero and variance one.
So, we can compute the asymptotic power function of the test based upon

) . 1f the eigenvelues Xr+1""’k‘+t (t < s) are equal, then the joint

r+l

asymptotic distribution of

'/ﬁ((brﬂ = Aep) ‘,...,\/ﬁ(q)r‘f-t = Aed)

2 2 J/
JEAr+1 + 2L+ AN

is the same as the joint distribution of the eigenvalues of the Gaussian
matrix A = (

independently as normal with means zero, var(a,.) = 2 and var(aij) =1

ii

for 1 # j. The distribution of the largest eigenvalue of this matrix

aii) : (r +t) x (r + t) where the elements of A are distributed

can be computed by using the method discussed in Krishnaiah and Chang (1971).

Percentage points of this distribution are given in Krishnaiah and
Schuurmann (1985). So, the power function of the test in this case can
be computed.

We will now discuss a sequential method (see Krishnaiah (1981))
method of testing for the rank of Q. The hypothesis Q = 0 is accepted

or rejected according as

<
% > Cal

where

Pl¢, 2 Cyy | @=0] = -a).

et hbeiiomcnionicnod
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If @ = 0, we don't proceed further. If © = 0 is rejected, we accept or

reject Hl according as
% 5 Ca
where
Poy < Cpp 16, > Cops ] = (1= ay
When H

1 is true, ¢1 and ¢2 are distributed independent of each other

asymptotically., Also, under Hl’ N¢2 is distributed asymptotically as

the largest eigenvalue of Sy ¢ (21 - 1) x (21 - 1) where S, is distri~
buted as the central Wishart matrix with 22 degrees of freedom and

E(Sl) = 2,I. So, we can compute a, for given value of Ca2 and vice

2

versa., If Hl is accepted, we don't proceed further. Otherwise, we

accept or reject H2 according as

<
% > Cu3
where

PIoy < Cyy | 65 2 Cppi Byl = (1 = o).

When H2 is true, N¢3 is distributed independent of ¢2 as the largest

eigenvalue of S (21 - 2) x (21 - 2) where S, is distributed as the

2 ¢ 2

central Wishart matrix with 29 degrees of freedom and E(Sz) = RZI. So,

we can compute Ca for given value of aq and vice versa. This procedure

3

is continued until a decision is made about the rank of Q.

.'\-.
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